アフィン関数の最大値関数と最小値関数の差を最小化する問題に対する内点法

小崎敏寛

平成18年9月2日

概要
アフィン関数の最大値関数と最小値関数の差を最小化する問題を考える。この問題を標準形の線形計画問題に変形する。この問題に対して内点法を適用すると，$O(n + t + pL)$ 反復で最適解を得ることができる。

1 アフィン関数の最大値関数と最小値関数の差を最小化する問題の定式化

アフィン関数の各点ごとの最大値を求める関数と最小値を求める関数の差を目的関数とする次の問題を考える。

$$\begin{align*}
\min x & \{ \max_{i=1, \ldots, l} (c_i^T x + d_i) - \min_{j=1, \ldots, p} (f_j^T x + g_j) \} \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0.
\end{align*}$$

(P)

ただし，定数 $A \in \mathbb{R}^{m \times n}$，$b \in \mathbb{R}^m$，$c_i \in \mathbb{R}^n$，$d_i \in \mathbb{R}$，$f_j \in \mathbb{R}^n$，$g_j \in \mathbb{R}$，変数 $x \in \mathbb{R}^n$。この問題は変数 $t_1, t_2 \in \mathbb{R}$ を使うと次の区分線形凸計画問題に書き換える。

$$\begin{align*}
\min t_1 - t_2 \\
\text{s.t.} & \quad c_i^T x + d_i \leq t_1 \quad i = 1, \ldots, l \\
& \quad f_j^T x + g_j \geq t_2 \quad j = 1, \ldots, p \\
& \quad Ax = b \\
& \quad x \geq 0.
\end{align*}$$

(P1)

標準形になおすと次のようになる。

$$\begin{align*}
\min t_{1+} - t_{1-} - t_{2+} + t_{2-} \\
\text{s.t.} & \quad c_i^T x - t_{1+} + t_{1-} + s_{1i} = -d_i \quad i = 1, \ldots, l \\
& \quad f_j^T x - t_{2+} + t_{2-} - s_{2j} = -g_j \quad j = 1, \ldots, p \\
& \quad Ax = b \\
& \quad x \geq 0, t_{1+} \geq 0, t_{1-} \geq 0, t_{2+} \geq 0, t_{2-} \geq 0 \\
& \quad s_{1i} \geq 0 \quad i = 1, \ldots, l \\
& \quad s_{2j} \geq 0 \quad j = 1, \ldots, p.
\end{align*}$$

(P2)

kosaki@me.titech.ac.jp, 東京工業大学大学院社会理工学研究科経営工学専攻
双対問題は次のようになる。

\[
\begin{align*}
\text{max} & \quad b^T y - \sum_{i=1}^l d_i u_i - \sum_{j=1}^p g_j v_j \\
\text{s.t.} & \quad A^T y + \sum_{i=1}^l c_i u_i + \sum_{j=1}^p f_j v_j \leq 0 \\
& \quad \sum_{i=1}^l u_i = -1 \quad u_i \leq 0 \quad i = 1, \ldots, l \\
& \quad \sum_{j=1}^l v_j = -1 \quad v_j \leq 0 \quad j = 1, \ldots, p
\end{align*}
\]

(2)

2 標準形への変換

\[
\begin{align*}
u_i &= -1 - \sum_{i \neq l} u_i (\leq 0), \quad v_j = -1 - \sum_{j \neq p} v_j (\leq 0) \text{として、目的関数、制約式に代入する。}
\end{align*}
\]

\[
\begin{align*}
b^T y - \sum_{i=1}^l d_i u_i - \sum_{j=1}^p g_j v_j &= b^T y - \sum_{i \neq l} d_i u_i - d_l (1 - \sum_{i \neq l} u_i) - \sum_{j \neq p} g_j v_j - g_p (1 - \sum_{j \neq p} v_j) \\
&= b^T y - \sum_{i \neq l} (d_l - d_i) u_i + \sum_{j \neq p} (g_p - g_j) v_j + d_l + g_p, \\
\end{align*}
\]

(1)

\[
\begin{align*}
A^T y + \sum_{i=1}^l c_i u_i + \sum_{j=1}^p f_j v_j &= A^T y + \sum_{i \neq l} c_i u_i + c_l (1 - \sum_{i \neq l} u_i) + \sum_{j \neq p} f_j v_j + f_p (1 - \sum_{j \neq p} v_j) \\
&= A^T y + \sum_{i \neq l} (c_l - c_i) u_i + \sum_{j \neq p} (f_j - f_p) v_j + c_l - f_p.
\end{align*}
\]

問題 (D) は次のようになる。

\[
\begin{align*}
\text{max} & \quad b^T y - \sum_{i \neq l} (d_l - d_i) u_i + \sum_{j \neq p} (g_p - g_j) v_j + d_l + g_p \\
\text{s.t.} & \quad A^T y + \sum_{i \neq l} (c_l - c_i) u_i + \sum_{j \neq p} (f_j - f_p) v_j \leq c_l + f_p \\
& \quad - \sum_{i \neq l} u_i \leq 1 \quad u_i \leq 0 \quad i = 1, \ldots, l - 1 \\
& \quad - \sum_{j \neq p} v_j \leq 1 \quad v_j \leq 0 \quad j = 1, \ldots, p - 1.
\end{align*}
\]

(D2)

この問題に対応する主問題は次のようになる。

\[
\begin{align*}
\text{min} & \quad (c_l + f_p)^T x + s_{1l} + s_{2p} + d_l + g_p \\
\text{s.t.} & \quad A x = b \\
& \quad (c_l - c_i)^T x + s_{1i} - s_{1l} = d_l - d_i \quad i = 1, \ldots, l - 1 \\
& \quad (f_j - f_p)^T x + s_{2j} - s_{2p} = g_j - g_p \quad j = 1, \ldots, p - 1 \\
& \quad x \geq 0 \quad s_{1i} \geq 0 \quad i = 1, \ldots, l \quad s_{2j} \geq 0 \quad j = 1, \ldots, p.
\end{align*}
\]

(P3)
スラック変数を導入する。

\[w_i := c_i + f_p - A^T y - \sum_{j \neq p} (c_j - c_i) u_i - \sum_{j \neq p} (f_j - f_p) v_j, \quad (3a) \]

\[w_{s_{1i}} := -u_i \quad i = 1, \ldots, l - 1, \quad (3b) \]

\[w_{s_{2j}} := -v_j \quad j = 1, \ldots, p - 1, \quad (3c) \]

\[w_{s_{1i}} := 1 + \sum_{i \neq l} u_i, \quad (3d) \]

\[w_{s_{2p}} := 1 + \sum_{j \neq p} v_j. \quad (3e) \]

最適条件は次のようにする。

\[Ax = b, \]

\[(c_i - c_l)^T x + s_{1i} - s_{1i} = d_i - d_i \quad i = 1, \ldots, l - 1, \]

\[(f_j - f_p)^T x + s_{2j} - s_{2p} = g_p - g_j \quad j = 1, \ldots, p - 1, \]

\[x \geq 0, \quad s_{1i} \geq 0, \quad i = 1, \ldots, l, \quad s_{2j} \geq 0, \quad j = 1, \ldots, p, \]

\[A^T y + \sum_{i \neq l} (c_i - c_l) u_i + \sum_{j \neq p} (f_j - f_p) v_j + w_x = c_l + f_p, \]

\[- \sum_{i \neq l} u_i + w_{s_{1i}} = 1, \quad - \sum_{j \neq p} v_j + w_{s_{2p}} = 1, \quad (4) \]

\[u_i + w_{s_{1i}} = 0, \quad i = 1, \ldots, l - 1, \]

\[v_j + w_{s_{2j}} = 0, \quad j = 1, \ldots, p - 1, \]

\[x^T w_x = 0, \]

\[s_{1i} w_{s_{1i}} = 0, \quad i = 1, \ldots, l - 1, \quad s_{2j} w_{s_{2j}} = 0, \quad j = 1, \ldots, p - 1, \]

\[s_{1i} w_{s_{1i}} = 0, \quad s_{2p} w_{s_{2p}} = 0. \]

変換後の主問題の最適解を \((x^*, s_{1i}^*, s_{1l}^*, s_{2j}^*, s_{2p}^*)\) として、元の主問題の最適解は

\[(x^*, t_1, t_2, s_{1l}^*, s_{2j}^*) = (x^*, c_l^T x^* + s_{1l}^* + d_l, f_p^T x^* - s_{2p}^* + g_p, s_{1l}^*, s_{2j}^*) \quad (5) \]

と得られる。また、変換後の双対問題の最適解を \((y^*, u_1^*, \ldots, u_{l-1}^*, v_1^*, \ldots, v_{j-1}^*, \ldots, v_{p-1}^*)\) として、元の双対問題の最適解は

\[(y, u_1, \ldots, u_i, \ldots, u, v_1, \ldots, v_j, \ldots, v_p) = (y^*, u_1^*, \ldots, u_{l-1}^*, \ldots, -1 - \sum_{i \neq l} u_i^*, v_1^*, \ldots, v_{j-1}^*, \ldots, -1 - \sum_{j \neq p} v_j^*) \]

と得られる。

問題のサイズから、\(L\)を問題のサイズとしてショートステップ法で \(O(\sqrt{n} + l + pL)\) 反復である [1]。

参考文献