区分線形凸計画問題に対する内点法

東京工業大学経営工学専攻
小崎 敏寛

2006 5/28 S@CO 筑波大学
考える問題

• 区分線形凸計画問題

\[\min \max \left(c_i^T x + d_i \right) \]

\((P) \ s.t. \ Ax = b \)

\[x \geq 0. \]

定数 \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}, \)

変数 \(x \in \mathbb{R}^n. \)

関数 \(\max_{i=1, \ldots, l} (c_i^T x + d_i) \) は凸関数であるから

この問題は凸計画問題。

2006 5/28 S@CO 筑波大学
発表の構成

1. 区分線形凸計画問題を線形計画問題に変形する。
2. 線形計画問題を標準形の問題で解ける用に変換する。
3. 区分線形凸計画問題に対する多項式オーダーの内点法を提案する。
4. 凸関数の性質を使って解ける問題を考える。
5. 内点法の性質を使って解ける問題を考える。
1. 線形計画問題への変換

* 問題(P)は変数 \(t \in \mathbb{R} \) を使うと次の問題に書ける。

\[
\begin{align*}
\min_{x} & \max_{i=1,\ldots,l} (c_i^T x + d_i) \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0.
\end{align*}
\]

\[
\begin{align*}
\min_{t} & \\
\text{s.t.} & \quad c_i^T x + d_i \leq t \quad i = 1, \ldots, l \\
& \quad Ax = b \\
& \quad x \geq 0.
\end{align*}
\]
標準形にすると次のようになる。

\[
\begin{align*}
\text{min } t & & \quad \text{min } t_+ - t_-
\text{s.t. } c_i^T x + d_i \leq t & & \quad \text{s.t. } Ax = b
\text{Ax} = b & & \quad c_i^T x - t_+ + t_- + s_i = -d_i & i = 1, \ldots, l
x \geq 0. & & \quad x \geq 0 \quad t_+ \geq 0 \quad t_- \geq 0 \quad s_i \geq 0 & i = 1, \ldots, l.
\end{align*}
\]
双対問題は次のようになる。

\[
\begin{align*}
\min \ t_+ - t_- \\
\text{s.t. } & \ Ax = b \\
& \ c_i^T x - t_+ + t_- + s_i = -d_i \ i = 1, \ldots, l \\
& \ x \geq 0 \ t_+ \geq 0 \ t_- \geq 0 \ s_i \geq 0 \ i = 1, \ldots, l.
\end{align*}
\]

\[
\begin{align*}
\max \ b^T y - \sum_{i=1}^{l} d_i u_i \\
\text{s.t. } & \ A^T y + \sum_{i=1}^{l} c_i u_i + z = 0 \\
& \ \sum_{i=1}^{l} u_i \leq -1 \\
& \ \sum_{i=1}^{l} u_i \geq -1 \\
& \ u_i \leq 0 \ i = 1, \ldots, l \\
& \ z \geq 0.
\end{align*}
\]
整理すると次のようになる。

\[
\begin{align*}
\max b^T y - \sum_{i=1}^{l} d_i u_i & \quad \max b^T y - \sum_{i=1}^{l} d_i u_i \\
\text{s.t.} A^T y + \sum_{i=1}^{l} c_i u_i + z = 0 & \quad (D) \text{s.t.} A^T y + \sum_{i=1}^{l} c_i u_i + z = 0 \\
\sum_{i=1}^{l} u_i \leq -1 & \\
\sum_{i=1}^{l} u_i \geq -1 & \\
u_i \leq 0 \quad i = 1, \ldots, l & \\
z \geq 0.
\end{align*}
\]

2006 5/28 S@CO 筑波大学
2. 標準形の問題で解けるような変換

内点法を適用するために等式制約を解き代入する変換を行う。

\[u_i = -1 - \sum_{i \neq l} u_i (\leq 0) \] として目的関数、制約式に代入すると、

\[
\begin{align*}
 b^T y - \sum_{i=1}^{l} d_i u_i &= b^T y - \sum_{i \neq l} d_i u_i - d_l (-1 - \sum_{i \neq l} u_i) \\
 &= b^T y + \sum_{i \neq l} (d_l - d_i) u_i + d_l,
\end{align*}
\]

\[
\begin{align*}
 A^T y + \sum_{i=1}^{l} c_i u_i &= A^T y + \sum_{i \neq l} c_i u_i + c_l (-1 - \sum_{i \neq l} u_i) \\
 &= A^T y + \sum_{i \neq l} (c_i - c_l) u_i - c_l.
\end{align*}
\]
問題(D)は次のように書ける。

\[
\begin{align*}
\max & \quad b^T y + \sum_{i \neq l} (d_l - d_i)u_i + d_l \\
\text{s.t.} & \quad A^T y + \sum_{i \neq l} (c_i - c_l)u_i + v_x = c_l \\
& \quad -\sum_{i \neq l} u_i + v_{s_l} = 1 \\
& \quad u_i + v_{s_i} = 0 \quad i = 1, \ldots, l-1 \\
& \quad v_x \geq 0 \quad v_{s_l} \geq 0 \quad v_{s_i} \geq 0 \quad i = 1, \ldots, l-1
\end{align*}
\]
対応する主問題は次のようになる。

\[
\begin{align*}
\min & \quad c_l^T x + s_l + d_l \\
\text{s.t.} & \quad Ax = b \\
& \quad (c_i - c_l)^T x + s_i - s_l = d_i - d_l \quad i = 1, \ldots, l - 1 \\
& \quad x \geq 0 \quad s_i \geq 0 \quad i = 1, \ldots, l.
\end{align*}
\]
最適条件は次のようになる。
\[Ax = b, \]
\[(c_i - c_l)^T x + s_i - s_l = d_l - d_i \quad i = 1, \ldots, l - 1, \]
\[x \geq 0, s_i \geq 0 \quad i = 1, \ldots, l, \]
\[A^T y + \sum_{i \neq l} (c_i - c_l)u_i + v_x = c_l, \]
\[-\sum_{i \neq l} u_i + v_{s_l} = 1, \]
\[u_i + v_{s_i} = 0 \quad i = 1, \ldots, l - 1, \]
\[v_x \geq 0, v_{s_i} \geq 0 \quad i = 1, \ldots, l - 1, \]
\[x^T v_x = 0, \]
\[s_i v_{s_i} = 0 \quad i = 1, \ldots, l. \]
変換後の問題の最適解からもとの問題の最適解を得ることができる。
変換後の主問題の解を \((x^*, s_1^*, \ldots, s_l^*)\) として、もとの主問題の解は
\[
(x, t, s_1, \ldots, s_l) = (x^*, c_l^T x^* + s_l^* + d_l, s_1^*, \ldots, s_l^*)
\]
変換後の双対問題の解を \((y^*, u_1^*, \ldots, u_{l-1}^*)\) として、もとの双対問題の解は
\[
(y, u_1, \ldots, u_l) = (y^*, u_1^*, \ldots, -1 - \sum_{i \neq l} u_i^*)
\]

2006 5/28 S@CO 筑波大学
3. 多項式オーダーの解法

・ 問題のサイズから主双対内点法のショートステップ法で $O(\sqrt{n+L})$ 反復で解ける。

$$\min c_l^T x + s_l + d_l$$

s.t. $Ax = b$

$$(c_i - c_l)^T x + s_i - s_l = d_l - d_i \quad i = 1, \ldots, l - 1$$

$$x \geq 0, s_i \geq 0 \quad i = 1, \ldots, l.$$
主双対内点法は、センターパスを近似し、最適解に近づく反復解法。
と表す。

\[
\begin{bmatrix}
x \\
s_1 \\
\vdots \\
s_i \\
s_{l-1} \\
s_l
\end{bmatrix}, \quad
\begin{bmatrix}
y \\
u_1 \\
\vdots \\
u_i \\
u_{l-1}
\end{bmatrix}, \quad \begin{bmatrix}
u_x \\
u_{s_1} \\
\vdots \\
u_{s_i} \\
u_{s_{l-1}}
\end{bmatrix}, \quad \begin{bmatrix}
\tilde{x} := \begin{bmatrix}
A \\
(c_1 - c_l)^T \\
\vdots \\
(c_i - c_l)^T \\
(c_{l-1} - c_l)^T
\end{bmatrix} \cdot
\begin{bmatrix}
b \\
d_i - d_1 \\
\vdots \\
d_i - d_i \\
d_i - d_{l-1}
\end{bmatrix}, \quad \tilde{b} :=
\begin{bmatrix}
c_l \\
s_i \\
0 \\
\vdots \\
0
\end{bmatrix}, \quad \tilde{c} :=
\end{bmatrix}

実行可能内点を

\[\mathcal{F}^0 := \left\{ (\tilde{x}, \tilde{y}, \tilde{s}) : \tilde{A} \tilde{x} = \tilde{b}, \tilde{A}^T \tilde{y} + \tilde{s} = \tilde{c}, (\tilde{x}, \tilde{s}) > 0 \right\}\]

と表す。近傍を

\[\mathcal{N} := \left\{ (\tilde{x}, \tilde{y}, \tilde{s}) \in \mathcal{F}^0 : \|\tilde{X} \tilde{s} - \mu e\|_2 \leq 0.4\mu \right\}\]

と表す。
アルゴリズム

step0: 初期点 $(\tilde{x}^0, \tilde{y}^0, \tilde{z}^0) \in \mathcal{N}$ が与えられる。終了基準 μ^* を与える。$\sigma := 1 - \frac{0.4}{\sqrt{n+l}}$, $\mu^0 := \frac{\tilde{x}^{0T} \tilde{z}^0}{n+l}$, $k := 0$ とする。

step1: もし終了基準 $\mu^k \leq \mu^*$ をみたすならば終了する。

step2: $\mu^k := \frac{\tilde{x}^{kT} \tilde{z}^k}{n+l}$ として

\[
\begin{align*}
\tilde{A} \Delta \tilde{x}^k &= 0 \\
\tilde{A}^T \Delta \tilde{y}^k + \Delta \tilde{z}^k &= 0 \\
\tilde{S}^k \Delta \tilde{x}^k + \tilde{X}^k \Delta \tilde{z}^k &= \sigma \mu^k e - \tilde{X}^k \tilde{z}^k
\end{align*}
\]

を解きニュートン方向 $(\Delta \tilde{x}^k, \Delta \tilde{y}^k, \Delta \tilde{z}^k)$ を得る。$(\tilde{x}^{k+1}, \tilde{y}^{k+1}, \tilde{z}^{k+1}) := (\tilde{x}^k, \tilde{y}^k, \tilde{z}^k) + (\Delta \tilde{x}^k, \Delta \tilde{y}^k, \Delta \tilde{z}^k)$ とする。

step3: $k := k + 1$ として step1 に戻る。
k 反復目を考える。等式制約は次の関係より成り立つ。

$$
\tilde{A} \tilde{x}^{k+1} = \tilde{A} \tilde{x}^k = \tilde{b},
$$

$$
\tilde{A}^T \tilde{y}^{k+1} + \tilde{s}^{k+1} = \tilde{A}^T \tilde{y}^k + \tilde{s}^k = \tilde{c}.
$$

最適性の基準として使う双対ギャップについて、$\Delta \tilde{x}^k T \Delta \tilde{s}^k = 0$ に注意すると、

$$
\begin{align*}
\tilde{x}^{k+1} T \tilde{s}^{k+1} &= (\tilde{x}^k + \Delta \tilde{x}^k)^T (\tilde{s}^k + \Delta \tilde{s}^k) \\
&= \tilde{x}^k T \tilde{s}^k + \tilde{x}^k T \Delta \tilde{s}^k + \tilde{s}^k T \Delta \tilde{x}^k + \Delta \tilde{x}^k T \Delta \tilde{s}^k \\
&= \left(1 - \frac{0.4}{\sqrt{n+1}} \right) (n+l) \mu^k.
\end{align*}
$$

2006 5/28 S@CO 筑波大学
次の不等式が成り立つことよりアルゴリズムで得られる次の点も近傍に入れる。

\[
\left\| \tilde{X}^{k+1} \tilde{s}^{k+1} - \mu^{k+1} \right\|_2 = \left\| \left(\tilde{X}^k + \Delta \tilde{X}^k \right) \left(\tilde{s}^k + \Delta \tilde{s}^k \right) - \mu^{k+1} \right\|_2 \\
= \left\| \Delta \tilde{X}^k \Delta \tilde{s}^k \right\|_2 \\
= \left\| D^{-1} \Delta \tilde{X}^k D \Delta \tilde{s}^k \right\|_2 \\
\leq \frac{\sqrt{2}}{4} \left\| D^{-1} \Delta \tilde{x}^k + D \Delta \tilde{s}^k \right\|_2^2 \\
= \frac{\sqrt{2}}{4} \left\| \left(\tilde{X}^k \tilde{s}^k \right)^{-1/2} \left(\sigma \mu^k e - \tilde{X}^k \tilde{s}^k \right) \right\|_2^2 \\
\leq \frac{\sqrt{2}}{4} \min \frac{\tilde{X}^k \tilde{s}^k}{\tilde{x}_i^k \tilde{s}^k_i} \left\| \tilde{X}^k \tilde{s}^k - \sigma \mu^k e \right\|_2^2 \\
\leq \frac{\sqrt{2}}{4} \left\| \left(\tilde{X}^k \tilde{s}^k - \mu^k e \right) + (1 - \sigma) \mu^k e \right\|_2^2 \\
\leq \frac{\sqrt{2}}{4} \frac{0.4^2 + (1 - \sigma)^2 (n + l)}{\mu^k} \\
\leq \frac{32\sqrt{2}}{240} \mu^k \\
\leq 0.4 \mu^{k+1}.
\]

正値性もなりたつ。
一反復で双対ギャップを $1 - 0.4/\sqrt{n + l}$ にできるので、アルゴリズムは $O(\sqrt{n + lL})$ 反復で最適解を得ることができる。

2006年6月20日
筑波八千代
4. 凸関数の性質を使うと

・ 区分線形凸関数の非負結合は凸関数であることから、次の問題も同様に解ける。

\[
\min_x \sum_{p=1}^{g} \theta_p \max_{i_p=1}^{l_p} \left(c_i^{pT} x + d_i^p \right)
\]
\[
\text{s.t. } A x = b
\]
\[
x \geq 0.
\]

ただし、定数は \(A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ c_i \in \mathbb{R}^n, \ d_i \in \mathbb{R}, \ \theta_p \in \mathbb{R}_+, \) 変数は \(x \in \mathbb{R}^n. \)
制約式に区分線形凸関数がある問題

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
\max_{i=1,\ldots,l} & \quad (f_i^T x + g_i) \leq h \\
& \quad x \geq 0.
\end{align*}
\]

定数 \(A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^{m}, \ c \in \mathbb{R}^{n}, \ f_i \in \mathbb{R}^{n}, \ g_i \in \mathbb{R}, \ h \in \mathbb{R}, \) 変数 \(x \in \mathbb{R}^{n}. \)

• この問題は標準形の線形計画問題に帰着できるので, 内点法で解ける.
制約式に区分線形凸関数の非負結合がある問題

• 区分線形凸関数の非負結合は凸関数。

\[
\begin{align*}
\text{min } & \quad c^T x \\
\text{s.t. } & \quad A x = b \\
& \quad \sum_{p=1}^{q} \theta_p \max_{i=1,...,t_p} (f_i^p x + g_i^p) \leq h \\
& \quad x \geq 0.
\end{align*}
\]

\[A \in \mathbb{R}^{m \times n},\ b \in \mathbb{R}^{m},\ c \in \mathbb{R}^{n},\ f_i^p \in \mathbb{R}^{n},\ g_i^p \in \mathbb{R},\ h \in \mathbb{R},\ x \in \mathbb{R}^n_+\]

• この問題は変換を使い内点法で解ける。
5. 内点法の性質を使うと

• 半正定値制約を持つ区分線形凸計画問題

\[
\begin{align*}
\min_{X} \max_{i=1, \ldots, l} (C_i \cdot X + d_i) \\
\text{s.t. } A_1 \cdot X &= b_1 \\
& \quad \vdots \\
A_m \cdot X &= b_m \\
X &\succeq 0.
\end{align*}
\]

定数 \(A_1, \ldots, A_m \in S^n\), \(b_1, \ldots, b_m \in \mathbb{R}\), \(C_i \in S^n\), \(d_i \in \mathbb{R}\),
変数 \(X \in S^n_+\).

• この問題は変換を使って, 内点法で解ける.
• 二次錐制約を持つ区分線形凸計画問題

\[
\begin{align*}
\min_x \max_{i=1, \ldots, l} (c_i^T x + d_i) \\
\text{s.t. } A x = b \\
\sqrt{\sum_{j=2, \ldots, n} x_j^2} \leq x_1.
\end{align*}
\]

定数 \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}, \)
変数 \(x \in \mathbb{R}^n. \)

• この問題は変換を使って, 内点法で解ける.
今後の課題

• 応用を考える。
• 変換を用いないで、直接ニュートン法を適用する内点法を考える。
• 自由変数を持つ線形計画問題に対する内点法を考える。
参考文献

• D.Bertsimas and J.N.Tsitsiklis, Introduction to Linear Optimization.
• S.Boyd and L.Vandenberghe, Convex Optimization.
• K.Kobayashi, K.Nakata and M.Kojima, A Conversion of an SDP Having Free Variables into the Standard Form SDP.
• S.J.Wright, Primal-Dual Interior-Point Method.